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A MATHEMATICAL MODEL AND NUMERICAL
SOLUTION TECHNIQUE FOR A NOVEL ADJUSTABLE

HYDRODYNAMIC BEARING

J.K. MARTIN*
Engineering Mechanics Lubrication Research Group, The Open Uni6ersity, Milton Keynes, MK14 5AS, UK

SUMMARY

An analysis model for a novel adjustable hydrodynamic fluid film bearing is described. The principles of
hydrodynamic lubrication are outlined together with an expanded version of the governing pressure field
equation as related to the novel bearing. Finite difference approximations are given for the pressure field
equation and a temperature model, both related to the fluid film thickness. Relationships of viscosity
with temperature and pressure are included. A finite element model and an iterative computational
process are described, whereby full simultaneously converged field solutions for fluid film thickness,
temperature, viscosity and pressure were obtained, together with oil film forces. The model and solution
process were developed to apply to a variety of hydrodynamic bearings and an outline is given of its
extensive use in the design and simulation of one version of the novel bearing. Observations are given on
the operation, success rates and verifications of the computational process. Copyright © 1999 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Hydrodynamic fluid film bearings are widely used in many areas of mechanical engineering,
e.g. turbines, engines, pumps, gearboxes, etc., in aircraft, road and rail vehicles, ships,
generating plant, machine tools and many other applications where rotating parts are
supported. Generating their own oil film pressures, they can carry large loads, provide
significant stiffness and damping, while preventing physical contact between the bearing
surfaces. They can be of radially and axially supporting forms. The radial type most commonly
comprises a shaft or journal rotating within a stationary bearing housing. Less common is the
inverse arrangement of a rotor on a stationary journal. The axial form is the thrust bearing,
where the rotating member bears on thrust faces reacting axial loads. The principles of
hydrodynamic lubrication apply equally to all forms.

Hydrodynamic lubrication is a self-sustaining fluid film separation of the two bearing
surfaces. Loads are carried by pressures generated independently of supply pressure, the latter
merely ensuring adequate supply of lubricant. The lubricant, almost always oil, must have
significant viscosity, there must also be considerable relative motion of the surfaces, and the oil
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film shape must at some part be convergent. The phenomenon was put on a mathematical
footing by Reynolds in 1886 and most hydrodynamic lubrication theory involves some form of
Reynolds’ pressure field equation. This equation relates velocity- and pressure-induced fluid
flows based on the assumptions of continuity of volume flow rate and equilibrium of fluid film
forces. It predicts that substantial pressures and pressure gradients are generated that oppose
converging flows (and boost diverging flows). It is by such pressure fields that surface
separation can be maintained ensuring full film lubrication under large loads.

Although the design of bearings in general is well-documented, the continuing desire for
better performance in terms of higher speeds, lower energy losses, vibration suppression,
accuracy of location, noise signatures, etc., has lead to increased attention focusing on bearing
behaviour. In addition, some hitherto satisfactory bearings are failing drastically under
increasingly severe performance demands.

A novel form of adjustable fluid film bearing has been devised whereby the hydrodynamic
conditions can be changed in an externally and continuously controlled manner during
operation. The principle can be applied to conventionally orientated journal bearings, to
inverse orientations, and to thrust bearings. The embodiments are included in international
patent applications filed by British Technology Group Ltd. [1]. Investigations have been
carried out on theoretical and practical models for journal bearings of both orientations. The
novel bearing has demonstrated significant improvements over conventional bearing designs in
terms of stiffness, damping, rotational accuracy, power losses and temperature rise. Perfor-
mance characteristics predicted by the computer model have been demonstrated in practice.

Herein is described the comprehensive mathematical model of the novel bearing and an
automated computational process devised to produce solutions for a variety of simulated
operating conditions. It was designed and developed to be applicable to all forms of the
bearing and was used extensively to study, and optimise, the design of a particular type of the
inverse arrangement comprising a rotor supported by a stationary journal. Figure 1 shows this

Figure 1. Adjustable hydrodynamic bearing concept.
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Figure 2. Hydrodynamic lubrication fluid element.

in outline form with displacements greatly exaggerated for clarity. There are four adjustable
cantilevered segments, G1, G2, G3 and G4, each supported by adjuster pins labelled ‘A’. The
principle of the bearing was that the hydrodynamic conditions could be changed by indepen-
dently controlled adjustments of the adjustable segment shapes and positions. This was
effected by position change inputs to the adjuster pins, ‘A’.

The mathematical model included an enhanced expansion of the governing Reynolds’
equation, a finite difference approximation and a computerised Gauss–Seidel iterative solution
technique. The adjustable segments of the bearing were simulated by finite element models that
interacted automatically with the fluid film pressure field solutions as they arose. Thus, the
‘elasto-hydrodynamic’ effects of the fluid film shapes on pressure (and 6ice 6ersa) were allowed
for. In addition, a finite difference temperature field approximation was devised and viscosity
allowed to vary with temperature and pressure.

The automated computing process involved an indexing cycle of successive finite element
and finite difference computations. In general, full simultaneously converged field solutions for
fluid film profile thickness, temperature, viscosity and pressure were regularly obtained for all
but the severest of load conditions. By this means a great many predicted performance
characteristics were studied. This paper outlines the design and development of the mathemat-
ical model and computation process itself and gives observations arising from its extensive use.

2. PRESSURE FIELD

The governing Reynolds’ equation for the fluid film pressure field acting on one adjustable
segment was derived with reference to the fluid element depicted in Figure 2. Pressure, film
thickness and viscosity were set to vary in two dimensions; circumferentially around (x) and
axially along (z) the segment surface. The derivation was based on a number of assumptions,
most of which are normally invoked as follows:

� Fluid density constant (i.e. not affected by pressure or temperature).
� Fluid acceleration forces negligible compared with viscous shear forces.
� Weight of fluid is negligible.
� Film thickness small compared with radii of curvature.
� Pressure constant radially through film thickness at each point.
� Viscosity constant radially through film thickness at each point.
� Viscosity a variable independent of pressure (initially).
� Relative inclination of bearing surfaces is small, sin u�u, cos u�1.
� No fluid slip at fluid bearing surfaces.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 845–864 (1999)
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� No loss of fluid due to leakage.
� Constant volume flow rate.
� Fluid forces in equilibrium.
� Fluid is Newtonian.

For steady loading conditions, the Reynolds’ equation as formulated was
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It is identical to the form usually quoted for conventional rotating journal bearings. Thus, with
an appropriate choice of reference axes, the same Reynolds’ equation was applicable for the
case of a rotating bearing housing on a stationary journal.

It is customary to non-dimensionalise all the variables to simplify numerical analysis, and to
make the computation algorithms more general. This was done with a view to treating analysis
programs as aids to design.

The variables were non-dimensionalised as:

x̄=
x

pD
, z̄=

z
BL

, H=
h
Cr

, h̄=
h

h1

, P( = P
vh1(R/Cr)2 .

The Reynolds’ equation became

(

(x̄
�H3

h̄

(P(
(x̄

�
+
�pD

BL

�2 (

(z̄
�H3

h̄

(P(
(z̄
�

=12p
(H
(x̄

. (2)

This is in dimensionless form with P( , H, h̄ variables in x- and z-directions.
It is also standard practice to use a substitution parameter P( =P*H−3/2, first used by

Vogelpohl [2]. The main advantage is in smoothing the pressure derivatives and improving the
accuracy of numerical solutions. The value of the exponent, −3/2, had another advantage in
eliminating one of the pressure derivative terms.

Using this substitution, Equation (2) became
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To expand this equation for the conventional type of journal bearing analysis it is usual to
assume that the surfaces are perfectly cylindrical and their axes in line, in which case both
derivatives of H by z̄ are zero, i.e.

(2H
(z̄2 =
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=0.

Furthermore, derivatives of H by x̄ can usually be expressed by differentiation of an expression
for H. In this work none of these could be assumed, and indeed it was an advantage not to,
in order to provide the options to analyse various adjuster surface shapes. Thus, Equation (3)
required full development of the differential products of P*, H and h̄.

For simplicity, letting A= (pD/BL)2, the expanded Reynolds’ equation was derived as
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The dynamic situation is usually modelled by considering the net translatory ‘squeeze film’
velocity in the radial direction at the position of the fluid element. To incorporate this velocity,
a treatment by Cameron [3] was adopted and the effects of any misalignment of the journal
and rotor axes, or any synclastic deformation of the adjuster segment surfaces were neglected
(for this parameter only). This approach brought forth the two-dimensional Reynolds’
equation, including the ‘standard’ squeeze film term as follows:
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which is Equation (1) with the squeeze film term added.
Non-dimensionalising by letting t( = tv, and adding the squeeze film term, Equation (3)

became
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The expanded Reynolds’ equation (4) became similarly modified by the inclusion of the term
+48p2((H/(t( ) on the right-hand-side. Inertia effects of the lubricant itself were considered
negligibly small for the range of velocity changes and eccentricities envisaged for the rotor.
This was in accordance with findings of Yamada and Nakabayaski [4] and Nataraj et al. [5].

3. FINITE DIFFERENCE APPROXIMATIONS

Numerical solution techniques for hydrodynamic lubrication are well-reported. Jakeman [6]
described a technique that allowed for modelling oil film cavitation, power loss and non-linear
characteristics of displacement and velocity performance coefficients. Khadar [7] presented a
numerical integral scheme that claimed advantages in programming and for bearings with
irregular geometry. Knight and Barrett [8] assumed polynomial pressure distributions in the
bearing axial direction and also demonstrated the improvements in modelling accuracy when
viscosity was allowed to vary circumferentially.

Gero and Ettles [9] compared the merits of finite difference and finite element approxima-
tions for the Reynolds equation pressure field, albeit for steady iso-viscous flow. There was
little to choose between them for lower-orders, although higher-order methods resulted in
generally improved accuracy. The lower-order finite difference method allowed for simplicity
of programming and boundary condition representation. They also suggested that elasto-hy-
drodynamic and thermodynamic effects could be viewed as solving a sequential series of
simpler, uncoupled and steady problems. This was the approach used for the work discussed
herein.

Finite difference approximations were made for derivatives of pressure, film thickness and
viscosity for two dimensions x and z, and for temperature in the x-direction, which were then
used to solve Equation (4) for one adjuster segment. A uniform mesh was assumed comprising
143 finite difference nodes distributed in the circumferential and axial directions by m and n
respectively over the fluid film surface of one adjuster segment. The general node integer
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location was i, j. It was found that in formulating the non-dimensional mesh spacing using
parameters related to the full journal circumference, a reduction factor, s, was necessary for
the circumferential direction, for one segment length, where

s=
circumferential length of adjuster surface

total circumference of journal
.

Figure 3 shows the developed surface of one journal adjuster surface. The oil supply was
assumed to be of some linear distribution along i=1.

The total mesh size was m×n nodes, starting at the origin 1, 1.
The distance between nodes in the circumferential (x or i ) direction was spD/(m−1),

non-dimensionalised=s/(m−1).
The distance between nodes in the axial (z or j ) direction was BL/(n−1), non-

dimensionalised=1/(n−1).
The finite difference approximations and simplification terms used were as follows:
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Figure 3. Finite difference and finite element meshes on adjustable segment bearing surface.
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Substituting in the expanded Reynolds’ equation with the variables H and h̄ in finite
difference form gave
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The finite difference forms for the pressure parameter terms were expanded and rearranged to
give an equation for pressure parameter P*. The following substitutions were used:

XXi, j= (Si, j+STi, j+Qi, j), YYi, j= (PPi, j+QQi, j+VVi, j),

SSSi, j= (BB)Ri, j+ (B)XXi, j, TTTi, j= (BB)Ri, j− (B)XXi, j,

UUUi, j= (CC)OOi, j+ (CC)YYi, j, VVVi, j= (CC)OOi, j− (C)YYi, j,

RRRi, j= (Ui, j+Xi, j+Yi, j+SSi, j+TTi, j+UUi, j−2(BB)Ri, j−2(CC)OOi, j).

The pressure parameter equation became

P*i, j=
WWi, j− (SSSi, j)P*i+1, j− (TTTi, j)P*i−1, j− (UUUi, j)P*i, j+1− (VVVi, j)P*i, j−1

RRRi, j

. (7)

This was now in a form ready for numerical computation, provided information about the
viscosity profile field was also known.
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4. TEMPERATURE AND VISCOSITY

A model for temperature prediction was formulated based on an assumed adiabatic model
developed and simplified by McCallion et al. [10] further modified by Pinkus and Bupara [11].
In this, heat generated by oil film shear was assumed to raise the temperature of the oil itself
only, and that this heat could only leave the bearing in the oil. This model was adapted to
relate temperature of the fluid film to the finite difference approximation of its thickness
profile, with temperature at a given node assumed constant through the thickness. The main
results were

T=T1+b−1 ln
�

ec1+AA
� 1

Hi−1
2 +

4
Hi

2+
1

Hi+1
2

n�
, where AA=

sE
3(m−1)
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An oil viscosity–temperature exponential index equation was assumed of the form

hT=h1 e−b(T−T1).

If the viscosity values at T1 and TREF were known, then b could be determined from

b=
ln

hREF

h1

T1−TREF

.

Knowing the temperature field Ti, j, the viscosity field could be calculated using the viscosity–
temperature equation quoted above, i.e.

hi, j=h1 e−b(Ti, j−T1).

Oil chosen was a straight mineral oil to ISO VG 32 [12] after detailed computations with this
and grades 22 and 46. Using available viscosity characteristic curves for such an oil, and in this
instance taking account of temperature corrected densities, the following reference data were
chosen for the viscosity model:

TREF=85°CT1=40°C
h1=0.0285 Pas hREF=0.0064 Pas

Regarding possible effects of pressure on viscosity, other empirical data proposed by Cameron
[3,13] were adopted. These predict that an increase of pressure increases viscosity. In extreme
conditions this is a useful feature as the regions of high pressure were in or near regions of high
temperature; thus, large reductions in viscosity due to temperature rise could be partially offset
by some increase due to pressure rise. Although not forming part of the Reynolds’ equation
derivation, these data were incorporated in the main iteration loop to operate on pressure
values as they arose. In general, predicted pressures were not high enough for the effect on
viscosity to be greatly significant. Increases in computer processing time were negligibly small
so the algorithm was left in. Largely for historical reasons the constants in this empirical model
relate to UK units, and conversion to SI was left until the final stage of computation to avoid
possible sources of error. If the value h2(i, j) was already updated from h1(i, j) to include
temperature effects, the pressure affected viscosity h3(i, j) was then given by:

h3(i, j)=h2(i, j)(1.0+lPi, j)16,

where
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Figure 4. Rotor radial displacement.

l=10a(0.062)h2(i, j)
−0.062 and a= −

�
0.4+

Ti, j(oF)
400

�
.

For both viscosity and pressure fields, information about the film thickness variation around
and along the bearing was needed.

5. ROTOR TRANSLATORY DISPLACEMENT AND VELOCITY

General rotor displacement, in two dimensions, comprised both x and y components. The
change of film thickness due to a general resultant displacement DR at reference angle fR was
determined for each of the four segment surfaces, with displacements being in all four polar
quadrants, i.e. 16 separate analyses. This number was necessary because each segment could be
independently and uniquely adjusted, and the rotor could adopt a position centred in any of
four polar co-ordinate quadrants. Figure 4 shows the geometrical considerations of a rotor
displacement DR at an angle fR in the first polar quadrant, and the effect on the film thickness
profile for segment G1 in its quadrant.

Displacements in other quadrants, repeated for the other three segments, were treated in a
similar manner.

The segment fluid film profiles could be determined from the initial geometry of the system,
the resulting displacements of the adjustable segment surfaces, and any displacements, i.e.
eccentricity, of the axis of rotation of the rotor. It was found that one general equation was
suitable for describing each segment film thickness profile for rotor displacements in all four
polar quadrants. It was of the form

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 845–864 (1999)
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h(1−4)Ri, j=h(1−4)i, j−RRO+
RRO

sin(ROC(1−4)i, j)
�

sin
�

p− (ROC(1−4)i, j)

−sin−1� DR

RRO

·sin(ROC(1−4)i, j)
���

.

For the dynamic situation the appropriate rotor translatory velocity could be set as an input
vector. The rotor was considered to have a translatory velocity of 6R at known reference angle
c, which could be resolved as appropriate into the relevant squeeze film velocities. Figure 5
shows a velocity vector in the first quadrant to be resolved for a point on segment G1 in its
quadrant. For a small rotor displacement the translating rotor velocity components at angle
b1R can be approximated to

6p=6R cos(p−b1R+c), 6t=6R sin(p−b1R+c).

So for each point

u0=
vD

2
−6t and

(h
(t

=6p.

For most practical conditions perceived in the application of the bearing system it was
assumed that the translatory velocity of the rotor would be orders of magnitude smaller than
the rotor tangential velocity due to its rotation. Thus, the rotor tangential velocity u0 could be
regarded as a constant for all points, being equal to vD/2. This was represented by the
constant term u0 in the Reynolds’ equation. Inclusion of 6t would make u0 a function of
angular position and require a cumbersome treatment in the equation. Although this was
possible in the computer programs the idea was not pursued.

Figure 5. Rotor radial velocity.
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Table I. Squeeze film velocity node equations

Squeeze film velocity Rotor velocity polar quadrant

V1RP(I, J)=6R cos(b1Ri, j−c)
V2RP(I, J)=−6R cos(c+p−b2Ri, j)
V3RP(I, J)=−6R cos(b3Ri, j−p−c)
V4RP(I, J)=6R cos(c−b4Ri, j)

V1RP(I, J)=6R cos(c−b1Ri, j)
V2RP(I, J)=6R cos(b2Ri, j−c)
V3RP(I, J)=−6R cos(c+p−b3Ri, j)
V4RP(I, J)=6R cos(c−b4Ri, j)

The implications for all four segments were considered, each with rotor displacements in all
four quadrants, and rotor translatory velocities also in all four quadrants.

The rotor translatory velocity vector was considered in polar co-ordinates with conventional
sign convention. Thus, for each segment profile the perpendicular squeeze film velocity at any
point could be negative or positive depending on the angles concerned. Care was taken to
check for ‘closing or opening’ squeeze film values at each point.

It was found that two sets of four equations were necessary to describe all segment squeeze
film velocity profiles, for general rotor velocities in all four polar quadrants.

These are given in Table I. Quadrants 3 and 4 could be covered by reversing the sign of 6R
in the appropriate set of equations.

6. FINITE ELEMENT MODEL

The adjuster segments were modelled using proprietary finite element software including a
pre-processor and direct access to a solver. Linear statics analysis was used producing
displacements in Cartesian co-ordinates for all element nodes, from which stresses were
automatically computed using appropriate material data which in this case was steel to BS970
(1991) 655M13 (equivalent to En36) [14]. A range of checks and verifications were carried out
using in situ routines, manual calculations, etc. Model files were created using mapped mesh
generation, in preference to fully automatic generation, in order to retain control of element
location and node numbering sequences.

A key feature was to arrange the finite element faces representing the adjustable segment
surface in contact with the fluid film such that the face centroids coincided with finite
difference node positions for the pressure field solution (Figure 3). By this means a field of
pressures could be applied directly to the surface with each finite difference nodal pressure
value being applied to the relevant finite element face. This effectively specified the size and
orientation of the finite element mesh.
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The chosen finite difference mesh comprised a pattern of 13×11 nodes. One hundred and
thirty-two of these nodes were to be positioned at finite element face centroids. The oil film
surface of the adjustable segment, thus needed 132 elements. A mapped distribution of
elements throughout the model to produce this face resulted in a finite element solid model
comprising 528 elements.

To check accuracy, a model was repeatedly analysed using a range of element mesh
specifications for the same applied loading conditions. Stresses were computed for increasingly
fine element specifications and the iteration effect of results noted. For each specification the
nodes at the fixed end of the segment were restrained to have zero degrees of freedom, and the
nodes nearest a notional position of the adjuster pin had a load set applied. This adjuster force
was divided into a number of equal values, the number corresponding to the number of nodes,
with the end node values being reduced by 50%. It was thus applied as an approximated
distributed load of discrete values. Each node value was applied in Cartesian components (the
axial component being zero) all making up a load set. This load set was optimised by repeated
solutions to generate a computed displacement at the free end of the segment of 75% of the
available concentric clearance, Cr.

In subsequent studies, particularly with pressure fields applied, the adjuster input was
modelled as an imposed displacement restraint. The nodes representing the adjuster pin were
specified with imposed displacements UX, UY equivalent to those produced with the input
force case. Comparison of resulting data for both cases verified this alternative method. By
using the imposed displacement the same adjuster input setting could be used for a variety of
pressure load cases and the force reaction on the adjuster pin then computed from results data.
Intermediate settings were specified by simple proportion.

The boundary condition in the region of the adjuster pin was in reality a complicated
contact/rolling combination that could not easily be modelled. Predicted stress values in the
pin region were therefore not reliable. They were, however, judged to be a worst case owing
to the St. Venant effect that would occur in the real situation. By the same effect, results for
elsewhere in the model would still be valid.

Segment models were constructed using parabolic and linear finite element types and
compared one with another. In general, it was found that the linear element type was
satisfactory for most conditions studied. This is discussed further below.

7. ITERATIVE COMPUTATION PROCESS

Holmes and Ettles [15] made a detailed study of iterative solution techniques compared with
direct methods and concluded that iterative methods were easier to program and consumed
less storage space. They also cautioned that neither method if applied to successive iterative
solutions of coupled systems could be guaranteed to produce values that converged
exponentially.

The computing process adopted for the work described herein applied to each segment and
involved a repeated cycle shown in outline in Figure 6. It could be invoked any number of
times (within limits) to take account of the elasto-hydrodynamic effect, and in most cases so
tried did produce resulting pressure fields and fluid film profiles that simultaneously converged
asymptotically towards a single solution, i.e. a given pressure field and film profile for each set
of operating conditions. The process could then be indexed on to the next adjustable segment
and repeated until solutions had been achieved for all segments.

Figure 7 shows this overall process in outline form. Only one finite element model file was
necessary as all four segments were identical. Each of the four segments existed in a dedicated
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subdirectory from which the model file could be addressed as appropriate. A suite of programs
was written in Fortran 77 to carry out the numerical processing at key stages. All programs
were verified and checked with specimen manual calculations. A range of specially written
program files controlled and ran the computing process entirely automatically once initial
conditions had been set. All programs were written in general terms to avoid the need to edit
when changing system parameters, which were entered as data. The main steps in the process
can be summarised as follows.

The operating conditions were entered in data files. These included individual segment
adjustments, rotor position, rotor angular and translatory velocities. The process was then
initiated and left to run automatically.

The first adjustable segment No. 1 was referenced and a finite element solution obtained for
the given input conditions.

The finite element results data file was then interrogated by a specially written program.
This scanned the data searching out relevant information for the nodes on the bearing segment
surface. It extracted the initial x and y co-ordinates and final displacements UX and UY. The
nodes targeted were mid-side finite element nodes adjacent to the element face centroid in the
case of parabolic elements, or the corner nodes for linear elements. A dummy set of nodes
corresponding to line 1, j was created by reflecting the line for 2, j initial positions with zero

Figure 6. Overall computing process for 1 adjustable segment.
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Figure 7. Overall computing process for whole bearing.

displacements. For each finite element node, the radial lubricant film thickness was calculated
allowing for any rotor displacement and stored.

Each pair or corner groups’ finite element film thickness values were then averaged to create
a linear mid-position film thickness value at the element face centroid. This represented the
required value for the finite difference node position. The nodal information representing the
adjuster pin interface was also extracted, stored and processed to give an average pin node
displacement or total reaction force as appropriate. Also computed were squeeze film velocity
field profiles in the event of any input rotor translatory velocity representing the dynamic case.

The temperature and viscosity fields were then calculated and stored. A Gauss–Seidel
iteration process was then invoked to produce the lubricant hydrodynamic field of pressures,
beginning with an initial pressure field set at some low notional value with an assumed supply
pressure distribution along i=1. The edge pressures for j=1, j=n and i=m were set at a
negligibly small value to represent outlet atmospheric pressure (neglecting any vacuum
assistance that may be needed for exhaust oil). It was known from previous work that various
commonly assumed boundary conditions had little influence on solutions, so no other
boundary conditions were specified. Negative value suppression was employed to set any
calculated negative values of pressure parameter P*i, j to zero as they arose to reflect more
realistically the likely behaviour of the oil film.

This negated possible tensile viscosity properties of the oil. Another effect was to nearly
double the number of pressure program iterations required for a full solution. Exhaust oil was
assumed to be dispersed, without reforming as a lubricant film for the next adjustable segment.
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Also input after the first cycle was a field of pressures solved for the previous overall cycle.
Beginning the Gauss–Seidel iterative solution process, a converged pressure field was obtained
based on the input viscosity field. This was defined as a converged solution when:

for the Kth iteration �Pi, j
K −Pi, j

K−1�BPC �Pi, j
K �

for all values of i, j. The total number of iterations required was recorded and was usually less
than 50, even for a PC value of 1%. The acceptance factor PC was usually set between 1 and
5%, for all values of i, j. This was influenced by the limits of expected accuracy of finite
element models in general, and computing resources in particular.

The converged pressure field was then used to update the original viscosity field by invoking
the pressure–viscosity relationship. A new convergent pressure field was then obtained, and
the whole process repeated until the viscosity had converged to a solution defined by:

for the Jth iteration �h i, j
J −h i, j

J−1�BPC �h i, j
J �

for all values of i, j. Thus, both viscosity and pressure fields had converged to a solution. The
number of converged nodes was recorded for each loop and usually increased rapidly giving a
complete converged viscosity and pressure solution in only a few iterations, usually less than
10. In case a divergent solution occurred in any of the iteration loops, a limit value of
iterations triggered a stop to the process and issued an appropriate message.

The successfully converged final pressure field was the solution for the latest input field of
film thickness values. It was then compared with the solved pressure field obtained for the
previous cycle field of film thickness values and the differences in nodal values noted. A
solution was accepted when:

for the Gth iteration �Pi, j
G −Pi, j

G−1�BPC �Pi, j
G �.

This check was a measure of convergence to a final lubricant film shape profile. The film
thickness profile field values themselves were not used for cycle comparisons owing to the
likely smallness of changes in values and consequent ill-conditioning errors. Provision was
made for successive over relaxation.

If the film thickness profile field had not yet converged, a universal file of the finite
difference node pressures was used to automatically create a new pressure load case set for the
finite element analysis program. This new load set of pressures was applied to the adjuster
segment model and a fresh finite element solution obtained. This gave a new field of finite
element nodal displacements. The whole process was repeated cyclically until the pressure field
had converged to a solution within limits of that of the previous film thickness profile, as set
by PC above. By this means the elasto-hydrodynamic effect of the pressure field on the
adjustable segment was included.

Once the given segment had been successfully analysed with resulting mutually satisfied
convergent fields of film thickness, temperature, viscosity and pressure obtained, these and
other data, such as iteration records, etc., were stored. The process then indexed on automat-
ically to the next adjustable segment and the whole process was repeated. After all four
adjustable segments had been thus analysed, the automated process halted and various
post-processing operations were carried out.

One important parameter was the resultant oil film force. Each segment finite element
bearing surface was associated with a pressure value and for an element of face area EA and
at angle u from a given reference axis an oil film force could be computed for the complete
segment as follows:
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Fx=% fx= %
i=m

i=1

%
j=n

j=1

Pi, j(EA) sin u,

Fy=% fy= %
i=m

i=1

%
j=n

j=1

Pi, j(EA) cos u.

The net force for all four segments could be simply determined by vectorial resolution. These
operations were included in the pressure and post-processing programs.

8. DISCUSSION AND RESULTS

It is hoped that the full range of theoretical studies and predicted performance of the bearing
itself will be reported separately, along with practical testing carried out on a real version of
the bearing. Details of both are reported by Martin [17]. The main findings of using the
computation method are discussed below.

The computation process was carried out using a suite of centrally supported minicomputers
and took a minimum of about 3 h CPU time to achieve a full EHL solution for one set of
conditions, for all four segments. Batch processing was therefore used with elapsed times that
varied from about 4 h at best to over 3 days at worst for a single run. Access via modem was
straightforward and permitted monitoring ‘round the clock’ and initiation of new runs as
convenient avoiding peak use times. A total of 483 runs was successfully completed to produce
the results reported representing about 1500 h CPU time. Success rate of solution starts was
well over 90%.

The process was occasionally vulnerable to changes in the proprietary F.E. Software.
Experience showed that version updates tended to include unannounced changes in either
control commands or output formats. A typical example was an unheralded change in menu
name for load set from L to S. This meant that program files had to be edited wherever a load
set call had been incorporated.

Another area needing some care was treatment of data files following a system crash. It was
important not to use interactive-type purge commands in program files in case relevant current
data files were inadvertently deleted as the process tried to continue after stopping. It was also
possible in these circumstances for large temporary scratch files to be left residing on a
dedicated disk that could not be conveniently deleted without privileged access.

Generally, the overall process was robust and reliable, susceptible only to disk space limits
being exceeded. It was noted that the model file itself tended to grow in size, thereby
consuming disk space. This was because the database perpetually increased with the number of
load set changes and deletes. Delete and save commands did not purge the model file itself.
The only way to do this was to recreate it, either directly or indirectly using universal file
transfer. Direct recreation inevitably brought problems with interim version changes that may
have occurred. The problem was efficiently by-passed, however, by storing a clean copy of the
model file and copying it up to overwrite the working model file, whenever necessary.

The analysis process was used initially to design the shape of the adjustable segment
including the position of the adjuster pin. After such detailed studies, the pin was positioned
on the underside nearer (but not directly) opposite the region of computed centre of pressure
to minimise bending effects. This also gave advantages in terms of packaging and stiffness of
the main shaft.

It was established that the film shape resulting from the adjuster only mode (i.e. the first
overall iteration) produced peak pressures and total pressure forces invariably higher than
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subsequently generated shapes allowing for the elasto-hydrodynamic effect. Results also
showed that the first iterated shape produced the worst case loads for stressing purposes. The
effect of the induced first loop pressure forces was to increase the reaction force at the adjuster
pin by a factor of eight or nine times, and local stress values by about five times over the
displaced segment only case with no pressures. It was also noted that the effect of scalloping
the underside of the design was that under the influence of pressure loads the stresses were
spread approximately uniformly throughout the segment length, an efficient use of material.

Comparisons with the adjuster input only mode with no pressures, showed that the
elasto-hydrodynamic pressure field increased stresses for all models by about 30%. The
adjuster pin reaction however increased by a factor of between 2.5 and 5 depending on the
degree of scalloping.

It was noted that the peak pressures dropped when allowance was made for elasto-hydrody-
namic effects, and the location of the peak pressure advanced slightly for all models (P9,6 to
P8,6).

The use of linear elements instead of parabolic elements was investigated. Data in these
models were identical to those in the parabolic element models with the exception of the
element specification (i.e. linear instead of parabolic). The finite elements were thus intercon-
nected only at corner nodes with no mid-side node connections. Minimum modifications were
necessary for the processing software, it having been written to be as general as possible. The
main changes were in node numbering references and the processing of the element centroid
finite difference film thickness from four corner nodes instead of the mid side nodes. Cases
studied were again for an adjustment pin setting giving 75% ‘consumed’ radial clearance with
zero rotor eccentricity, in both rigid and EHL modes.

In rigid mode computed data were very close for both linear and parabolic element models.
The stress plots for all the stresses (sMAX, sMIN, sMS, sVM) were correspondingly similar for the
linear and parabolic cases, but the plots for the linear element model were less smooth and,
significantly, indicated less clearly the small regions of highest stress.

In EHL mode the parabolic element model needed 14 iterations of finite element model
solutions to converge to an overall solution based on a convergence factor of 1%. The linear
element model took 16 runs to converge to a solution based on a convergence factor of 5%.
Computed data for the two element types are shown in Table II.

It was noted that some corresponding data were significantly different and that the linear
element model appeared to consistently predict a ‘better’ performance (e.g. lower temperature
rise, higher pressures, larger oil film force, lower stresses etc.). Although depicting the same
adjustment settings and load cases it was clear that the results were influenced by the type of
finite element type specified, for the same sizes and numbers of finite elements. Care was
therefore needed in interpreting results, particularly for the maximum adjustment cases.

As was expected with linear elements the computation for each finite element solution was
speeded up considerably (e.g. approx. 5 minutes of CPU time instead of about 40). The
resulting data files of node and element information and results were also smaller (e.g. 285
blocks compared to 970 approx.), which speeded up the results processing. In EHL mode,
however, more finite element solutions were required to achieve an acceptable result, despite a
more generous convergence factor. The advantage of much quicker finite element computa-
tions was therefore offset by the need to have more of them.

In addition, as has been seen there were some significant differences in calculated data
resulting from the differences in film shape profiles derived from the finite element results.
Since these data were highly influenced by small perturbations in the hi, j field, (as are all
hydrodynamic lubrication conditions), the use of linear elements in the finite element models
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was not pursued further for cases of large adjustment or high rotor eccentricities (i.e. situations
producing very high pressures), and investigations for these conditions continued with the
parabolic type. It was also shown that for eccentricity ratios greater than about 0.6 both linear
element and parabolic element models of the most heavily loaded segment would only
converge very slowly in EHL mode. Experiments were tried with successive overrelaxation that
generally greatly accelerated convergence for these regimes, but some solutions diverged
equally rapidly on continuance. Holmes and Ettles [15] cautioned that no methods of
accelerating convergence of iterative solutions is universally applicable, including optimising
methods for dynamically calculating successive over relaxation factors, such as presented by
Brazier [16]. Such solutions were therefore not accepted, and no solutions achieved with
overrelaxation were used in the parametric study.

It was noted that pressures and load capacities predicted for eccentricities of the order 0.6
were equivalent to those of a conventional bearing operating with eccentricities around 0.9. No
attempts were made, therefore, to study in depth such extreme operating conditions, as one of
the aims of the novel bearing design was to reduce eccentricities.

This aim was clearly met and the problem of accelerating convergences for extreme
conditions thus receded in relevance.

Further studies were carried out for a range of rotor displacement angles, a small rotor
displacement eccentricity value, and a small adjuster segment setting. Under these conditions
rapid EHL convergences (i.e. 3 or 4 cycles to solution) were produced for each segment for
both parabolic and linear finite element models.

Segments 1–4 inclusive were all set equally to an adjustment, hA, of approximately
13.1×10−6 m. This was sufficient to produce oil film pressures and forces of significant values
for each segment (but all balanced to zero when the rotor was concentric). A rotor eccentric
displacement of 2.5×10−6 m was set for a range of rotor displacement angles 269.99°, 250°,
230° and 210°. Results are shown in Table III.

Table II. Data for EHL G6 linear and G4 parabolic elements, zero rotor
ecentricity

G4PData G6L
(parabolic elements)(linear elements)

h11,6 (mm) 0.0188 0.0177
h12,6 0.0179 0.0167

0.0128h13,6 0.0149

59.5T11,6 (°C) 56.4
65.461.1T12,6

71.2T13,6 65.8

P7,6 (MPa) 9.17 8.40
11.07P8,6 8.75

P9,6 12.27 8.36
6.93P10,6 11.19

PFRES (N) 4229.8 3669.0
@ ux (°) 40.00 55.0

4147.0RRES (N) 5186.4
57.2@ ux (°) 37.4

sMS (MPa) 39.4 55.1
sVM 99.974.6
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Table III. Effect of rotor displacement angle on full EHL solutions

269.99 250 230 210fR (°)

Fx (N) Fy (N) Fx (N)Segment Fy (N) Fx (N) Fy (N) Fx (N) Fy (N)

P −696.11 1015.4 −620.1 901.3 −559.5 807.5 −519.6 742.2
L −694.6 1022.2 −616.1 905.8 −556.9 813.5 −518.7 749.7

2 P −705.1 −502.6 −721.9 −523.1 −749.8 −543.9 −809.6 −591.4
L −713.2 −503.1 −728.3 −522.6 −755.2 −543.1 −813.1 −589.6
P 682.2 −928.3 752.2 −1024.53 817.4 −1117.6 876.2 −1205.1
L 679.2 −929.7 748.6 −1025.1 812.7 −1116.9 870.2 −1203.0
P 1290.0 924.6 1291.9 910.44 1251.2 876.2 1176.7 816.7
L 1287.4 917.6 1289.1 902.8 1250.9 869.8 1176.7 810.2

Total 571.0 509.1 702.1 264.1 759.3 22.2 723.7 −237.6
558.8 507.0 693.3 260.9 751.5 23.3 715.1 −232.7

P 765.0 41.7° 750.1FR 20.6° 759.6 1.7° 761.7 18.2°
L 754.5 42.2 740.7 20.6 751.9 1.8 752.0 18.0FR

DR=0.0000025 m; RS=2 (=0.5×0.75×CR); P, parabolic elements; L, linear elements.

It can be seen that for the conditions specified, full EHL solutions with parabolic elements
and linear elements were within 6% of one another, and most within 1.5%. Thus linear
elements could be used with advantage for lower values of effective eccentricity (i.e. B0.6
approximately). Also noticeable was the symmetry predicted with loads and attitude angles
being similar for any rotor displacement angle. The bearing system, therefore, appeared not to
be sensitive to direction of loading and so could provide similar bearing forces in all directions
for a given rotor displacement, with equal adjuster settings.

A comprehensive parametric study was carried out for both static and dynamic conditions,
for both zero and non-zero operating eccentricities. This is reported fully by Martin [17] and
it is hoped that further results will be published separately.

9. CONCLUSIONS

A comprehensive mathematical model has been developed for a novel adjustable hydrody-
namic bearing taking account of non-linear variation in the lubrication field shape profile.
Related temperature and viscosity models were also developed.

The governing Reynolds’ pressure field equation was expanded to take account of the
non-linear variations in viscosity and shape profile.
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Finite difference approximations were used to prepare a pressure parameter equation in a
form suitable for numerical computation, and for the temperature model.

The finite difference model was designed to interact automatically with a finite element
model of the bearing adjustable segments. The finite element model itself was based on a
proprietary pre-processor and solver with specially written control and processing programs to
permit results interrogation, processing and continued sequential overall processing in an
iterative manner. By these means, the elasto-hydrodynamic effect of the lubricant film shape
on pressure and 6ice 6ersa were allowed for.

Relative radial displacements and velocities between the bearing surfaces could also be
incorporated leading to consideration of bearing stiffness and damping.

The mathematical model and computation process were designed to be applicable to various
forms of adjustable hydrodynamic bearing, of any required dimensions, and were used
extensively in designing and studying one particular version comprising a rotor supported on
a stationary shaft.

The process produced convergent solutions for most conditions studied with success rates of
over 90% of solution starts. Failures were due mainly to external problems (e.g. disk space,
power failures, etc.) and occasionally to excessively severe input operating parameters delaying
overall convergence.

It was noted that for normal range operating conditions, linear finite element models could
be used with advantage in terms of processing time, but parabolic element models were
necessary for more severe cases. Accelerated convergence techniques were not found reliable in
producing truly converged solutions.
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